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1
METHODS AND APPARATUS FOR
DETECTING SOFTWARE INTEFERENCE

FIELD OF THE INVENTION

The field of this invention relates to methods and appa-
ratus for detecting application interference, and in particular
for detecting performance interference whilst, for example,
processing a safety critical application.

BACKGROUND OF THE INVENTION

Generally, when executing software that requires different
safety integrity levels, measures need to be put in place to
reduce a risk of interference. Typically, issues of interference
arise when one safety critical task interferes with a second
safety critical task, causing potentially dangerous malfunc-
tions to software-based processes due to reduced processing
performance resulting in a reduced progressing progress of
at least one of the safety critical tasks.

Worst case execution time (WCET) is typically used for
understanding timing behaviour of software where it is
important for reliability or correcting functional behaviour.
Calculating WCET generally involves generating approxi-
mations, which usually includes overestimation when there
are uncertainties. Therefore, in practice the exact WCET
itself is often regarded as unobtainable. For modern systems,
utilising WCET can require a huge effort and can lead to
inefficient implementations due to the involved approxima-
tions and worst case assumptions.

Targeting performance domain interference of software
executed either in a time sharing manner by a single com-
puting shell or on different computing shells integrated in a
multiprocessor system, requires quantifying disturbances
that are due to interferences in the performance domain.
Interferences can occur due to sharing of state based
resources, for example, having bi-stable elements or con-
current access to shared resources.

Current methods generally measure a time duration that a
specific software task requires for execution. Unfortunately,
state of the art processing shells are less and less determin-
istic in the time domain, and execution time relies heavily on
executed instructions, the processed data, and the process
circumstances. Therefore, as a result, time windows for time
domain performance monitoring have to be ever wider and
wider.

SnoopP is an on-chip, functional level, non-intrusive
profiler for software applications running on soft-core pro-
cessors. SnoopP comprises a user-specified variable number
of segment counters that are used to measure a number of
clock cycles spent in executing contiguous regions of
memory. Each segment contains two comparators to check
a value of the program counter between a specified low and
high address. If the value of the program counter is presently
accessing an address within these bounds, then the counter
value is incremented. A counter clocked by a central pro-
cessing unit (CPU) clock and masked by logic, is utilised to
validate if a CPU program counter is within a given range.
This enables the counter to assess the CPU time spend
within the user specified address space.

In general, this is used for profiling purposes, to identify
the code section that processing elements spend most of the
CPU time. However, it is known that this approach is
sensitive to non-deterministic behaviour (e.g. data depen-
dent execution time) and, therefore, provides only a limited
diagnostic coverage. As this approach only accumulates the
total CPU time spend to process the instructions within a
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given instruction address range, it is prone to all types of
non-determinism of computer processing. This approach
does not differentiate the CPU time spend for example on
only fetching data, fetching instructions, processing inter-
rupts, CPU stall cycles, number of instructions completed,
number of memory accesses (by type), number of instruc-
tion or data cache misses, number of cycles with multiple
instructions issue, number of instructions in a given class
completed (load/store instructions, branch/subroutine/return
instructions, integer, floating point instructions, etc.), cache
line fills, and calling subroutines, As these different CPU
times are differently influenced by software interferences or
hardware non-determinism this approach does not allow to
tailor the CPU timeout window to the specific indicators of
a software interference.

In summary, performance interference reduces the per-
formance of a processing unit whilst processing a safety
critical software task due to interference of a second soft-
ware task having a different safety criticality. Current meth-
ods of performance interference monitoring are only gener-
ally handled by imprecise time-based measurements.

Current methods generally measure a time duration a
specific software task requires to complete its execution (so
called timeout watchdog or window watchdog). Unfortu-
nately, state of the art processing shells are becoming less
and less deterministic in the time domain. A reason for the
reduction of execution time determinism may be due to
more and more speculative operations performed within a
core. In the case that these speculations are correct, the
results are available earlier. However, in the case that these
speculations are incorrect, the same instruction will take
longer to process.

Further, the hierarchical memory system (cache) may also
attempt to speculatively pre-fetch and store data and instruc-
tions. In the case that the speculative fetches were correctly
predicted, execution time will be fast. However, perfor-
mance may be significantly slowed down if the predicted
behaviour did not correspond to the program behaviour.

The execution time relies heavily on the executed instruc-
tions, processed data and the number of context switches
(interrupts) etc. As a result, the time windows for time
domain performance monitoring have to be wider and wider.

SUMMARY OF THE INVENTION

The invention provides an apparatus and a method for
detecting software interference of applications running
within a computing shell as defined in the independent
claims.

Specific embodiments of the invention are set forth in the
dependent claims. These and other aspects of the invention
will be apparent from and elucidated with reference to the
examples described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects and examples of the invention will
be described, by way of illustration only, with reference to
the drawings. Elements in the figures are illustrated for
simplicity and clarity and have not necessarily been drawn
to scale.

FIG. 1 schematically shows a processing device exem-
plified with respect to a system-on-chip (SoC) processing
device;

FIG. 2 schematically shows a high level block diagram of
an exemplary processing device of the present application;
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FIGS. 3 to 5 schematically show high level block dia-
grams of example performance counters according to the
present application;

FIG. 6 schematically shows a high level block diagram of
example performance counters for determining statistics
about instruction execution according to the present appli-
cation;

FIG. 7 schematically shows a high level block diagram of
an example implementation of a configurable performance
counter;

FIG. 8 schematically shows a block diagram of a safety
interference unit according to an example of the present
application:

FIGS. 9 and 10 schematically show functional block
diagrams of exemplary implementations of a convolution
based comparator 112 according to examples of the present
application; and

FIG. 11 schematically shows a time diagram of an opera-
tion of an exemplary safety interference unit according to
the present application.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Because the illustrated examples of the present invention
may for the most part, be implemented using electronic
components and circuits known to those skilled in the art,
details will not be explained in any greater extent than that
considered necessary as illustrated above, for the under-
standing and appreciation of the underlying concepts of the
present invention and in order not to obfuscate or distract
from the teachings of the present invention.

Aspects of the present disclosure are best understood from
the following detailed description when read with the
accompanying figures. It is noted that, in accordance with
the standard practice in the industry, various features are not
drawn to scale. In fact, the dimensions of the various
features may be arbitrarily increased or reduced for clarity of
discussion.

It is understood that the following disclosure provides
many different examples capable of implementing different
features. Specific examples of components and arrange-
ments are described below to simplify and thus clarify the
present disclosure. These are, of course, merely examples
and are not intended to be limiting. In many instances, the
features of one example may be combined with the features
of other examples. In addition, the present disclosure may
repeat reference numerals and/or signs in the various illus-
trative examples and in particular same reference numerals
and/or signs may be used throughout the drawings. This
repetition is for the purpose of simplicity and clarity.

Referring now to FIG. 1, there is shown a simplified
schematic diagram of a multi-core system on chip 600
having multiple processor cores 610, 620, 630, 640. The
multi-core system on chip 600 should be understood as one
example of a data processing device or a data processing
system in the context of the present application. As illus-
trated, each of the processor cores 610, 620, 630, 640 is
coupled to one or more levels of cache memory, such as an
L1 instruction cache (I-Cache), L1 data cache (D-Cache),
and/or .2 cache. While the processor cores 610, 620, 630,
640 may be identically designed or homogenous, the multi-
core SoC may also include one or more cores having a
different design. For example, the depicted multi-core SoC
600 also includes an accelerator 641 which may include one
or more processor cores for supporting hardware accelera-
tion for DFT/iDFT and FFT/iFFT algorithms and for CRC
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processing. Each processor core is coupled across an inter-
connect bus 650 to one or more memory controllers 661,
which are coupled in turn to one or more banks of system
memory (not shown). The interconnect bus 650 also couples
the processor cores to a Direct Memory Access (DMA)
controller 642, network interface 643, a high speed serial
interface 644, and to other hardware-implemented integrated
peripherals 671 to 679. The interconnect bus 650 may be a
coherency fabric.

Each of the processor cores 610, 620, 630, 640 may be
configured to execute instructions and to process data
according to a particular instruction set architecture (ISA),
such as x86, PowerPC, SPARC, MIPS, and ARM, for
example. Those of ordinary skill in the art also understand
the present invention is not limited to any particular manu-
facturer’s microprocessor design. The processor core may
be found in many forms including, for example, any 32-bit
or 64-bit microprocessor manufactured by Freescale,
Motorola, Intel, AMD, Sun or IBM. However, any other
suitable single or multiple microprocessors, microcon-
trollers, or microcomputers may be utilized. In the illustrated
embodiment, each of the processor cores 610, 620, 630, 640
may be configured to operate independently of the others,
such that all cores may execute in parallel. In some embodi-
ments, each of cores may be configured to execute multiple
threads concurrently, where a given thread may include a set
of instructions that may execute independently of instruc-
tions from another thread. Such a core may also be referred
to as a multithreaded (MT) core. Thus, a single multi-core
SoC 600 with four cores will be capable of executing a
multiple of four threads in this configuration. However, it
should be appreciated that the invention is not limited to four
processor cores and that more or fewer cores can be
included. In addition, the term “core” refers to any combi-
nation of hardware, software, and firmware typically con-
figured to provide a processing functionality with respect to
information obtained from or provided to associated cir-
cuitry and/or modules (e.g., one or more peripherals, as
described below). Such cores include, for example, digital
signal processors (DSPs), central processing units (CPUs),
microprocessors, and the like. These cores are often also
referred to as masters, in that they often act as a bus master
with respect to any associated peripherals. Furthermore, the
term multi-core (or multi-master) refers to any combination
of hardware, software, and firmware that that includes two
or more such cores (e.g., cores 610 and 620), regardless of
whether the individual cores are fabricated monolithically
(i.e., on the same chip) or separately. Thus, a second core
may be the same physical core as first core, but has multiple
modes of operation (e.g., a core may be virtualized).

As depicted, each processor core (e.g., processor core
610) may include a first level (IL1) cache, which includes a
data cache (D-Cache) and an instruction cache (I-Cache). In
addition, a second level of cache memory (I.2) may also be
provided at each core, though the [.2 cache memory can also
be an external [.2 cache memory, which is shared by one or
more processor cores. The processor core 610 executes
instructions and processes data under control of the operat-
ing system (OS), which may designate or select the proces-
sor core 610 as the control or master node for controlling the
workload distribution amongst the processor cores 610, 620,
630, 640. Communication between the cores 610, 620, 630,
640 may be over the interconnect bus 650 or over a crossbar
switch and appropriate dual point to point links according to,
for example, a split-transaction bus protocol such as the
HyperTransport (HT) protocol (not shown).
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The processor cores 610, 620, 630, 640 and accelerator
641 are in communication with the interconnect bus 650,
which manages data flow between the cores and the
memory. The interconnect bus 650 may be configured to
concurrently accommodate a large number of independent
accesses that are processed on each clock cycle, and enables
communication data requests from the processor cores 610,
620, 630, 640 to external system memory and/or an on-chip
non-volatile memory 662, as well as data responses there-
from. In selected embodiments, the interconnect bus 650
may include logic (such as multiplexers or a switch fabric,
for example) that allows any core to access any bank of
memory, and that conversely allows data to be returned from
any memory bank to any core. The interconnect bus 650 may
also include logic to queue data requests and/or responses,
such that requests and responses may not block other
activity while waiting for service. Additionally, the inter-
connect bus 650 may be configured as a chip-level arbitra-
tion and switching system (CLASS) to arbitrate conflicts
that may occur when multiple cores attempt to access a
memory or vice versa.

The interconnect bus 650 is in communication with main
memory controller 661 to provide access to the optional
SOC internal memory 662 or main memory (not shown).
Memory controller 661 may be configured to manage the
transfer of data between the multi-core SoC 600 and system
memory, for example. In some embodiments, multiple
instances of memory controller 661 may be implemented,
with each instance configured to control a respective bank of
system memory. Memory controller 661 may be configured
to interface to any suitable type of system memory, such as
Double Data Rate or Double Data Rate 2 or Double Data
Rate 3 Synchronous Dynamic Random Access Memory
(DDR/DDR2/DDR3  SDRAM), or Rambus DRAM
(RDRAM), for example. In some embodiments, memory
controller 661 may be configured to support interfacing to
multiple different types of system memory. In addition, the
Direct Memory Access (DMA) controller 642 may be pro-
vided, which controls the direct data transfers to and from
system memory via memory controller 661.

The interconnect bus 650 is in communication with
storage HUB 663 to provide access to mass storage (not
shown). The storage HUB 663 may be configured to manage
the transfer of data between the multi-core SoC 600 and
mass storage units, for example. The storage HUB 663 may
further include one or more interfaces specific for the
technology used by the mass storage units. Herein, the
storage HUB 663 is exemplarily illustrated to include a
SD/eMMC Interface 664, which is provided to allow for
access to SD (Secure Data), MMC (MultiMediaCard) cards
(not shown) and/or eMMC (embedded MultiMediaCard)
(not shown). Both storage technologies are implemented on
the basis of non-volatile flash memory technology. In some
embodiments, multiple instances of storage HUB 663 and/or
interfaces provided with the storage HUB 663 may be
implemented, with each instance configured to control a
respective bank of system memory. Memory storage HUB
663 may be configured to interface to any suitable type of
mass storage interfacing standards including in particular
flash memory storage standards (SD, MMC), SAS (Serial
Attached SCSI), SATA (Serial ATA) and the like.

The multi-core SoC 600 may comprise a dedicated graph-
ics sub-system 200. The graphics sub-system 200 may be
configured to manage the transfer of data between the
multi-core SoC 600 and graphics sub-system 200, for
example, through the interconnect bus 650. The graphics
sub-system 200 may include one or more processor cores for
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supporting hardware accelerated graphics generation. The
graphics generated by the graphics sub-system 200 may be
outputted to one or more displays via any display interface
such as LVDS, HDMI, DVI and the like.

As will be appreciated, the multi-core SoC 600 may be
configured to receive data from sources other than system
memory. To this end, a network interface engine 643 may be
configured to provide a central interface for handling Eth-
ernet and SPI interfaces, thus off-loading the tasks from the
cores. In addition, a high speed serial interface 644 may be
configured to support one or more serial RapidIO ports, a
PCI-Express Controller, and/or a serial Gigabit Media Inde-
pendent Interface (SGMII). In addition, one or more inter-
faces 670 may be provided, which are configured to couple
the cores to external boot and/or service devices, such as 1/0
interrupt concentrators 671, UART device(s) 672, clock(s)
673, timer(s) 674, reset 675, hardware semaphore(s) 676,
virtual interrupt(s) 677, Boot ROM 678, 12C interface 679,
GPIO ports, and/or other modules.

Instructions for the operating system, applications, and/or
programs may be in mass storage or memory, which are in
communication with processor cores 610, 620, 630, 640
through communications fabric 650. In these illustrative
examples, the instructions are in a functional form on a
non-transitory tangible medium such as a persistent mass
storage. These instructions may be loaded into memory for
running by processor cores 610, 620, 630, 640. The pro-
cesses of the different embodiments may be performed by
processor unit 204 using computer implemented instruc-
tions, which may be in a memory. These instructions are
referred to as program code, computer usable program code,
or computer readable program code that may be read and run
by one or more processor cores 610, 620, 630, 640 in the
SoC 600. The program code in the different embodiments
may be embodied on different physical or computer readable
non-transitory tangible storage media.

Program code may be in a functional form on computer
readable medium that may be selectively removable and
may be loaded onto or transferred to data processing system
for running by the one or more processor cores. Program
code and computer readable medium form computer pro-
gram product in these examples. In one example, computer
readable medium may be computer readable non-transitory
tangible storage medium. Computer readable storage
medium may include, for example, an optical or magnetic
disk that may be inserted or placed into a drive or other
device that may be part of persistent storage for transfer onto
a mass storage device, such as a hard drive, that may be part
of persistent storage. Computer readable storage medium
also may take the form of a persistent storage, such as a hard
drive, a thumb drive, or a flash memory, that may be
operably coupled to data processing system. In some
instances, computer readable storage medium may not be
removable from data processing system.

Alternatively, program code may be transferred to data
processing system using computer readable signal medium.
Computer readable signal medium may be, for example, a
propagated data signal containing program code. For
example, computer readable signal medium may be an
electromagnetic signal, an optical signal, and/or any other
suitable type of signal. These signals may be transmitted
over communications links, such as wireless communication
links, optical fiber cable, coaxial cable, a wire, and/or any
other suitable type of communications link. In other words,
the communications link and/or the connection may be
physical or wireless in the illustrative examples.
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In some illustrative embodiments, program code may be
downloaded over a network to a persistent medium from
another device or data processing system through computer
readable signal medium for use within data processing
system. For instance, program code stored in a computer
readable non-transitory tangible storage medium in a server
data processing system may be downloaded over a network
from the server to data processing system. The data pro-
cessing system providing program code may be a server
computer, a client computer, or some other device capable of
storing and transmitting program code.

The different components illustrated for data processing
system are not meant to provide architectural limitations, to
the manner in which different embodiments may be imple-
mented. The different illustrative embodiments may be
implemented in a data processing system including compo-
nents in addition to or in place of those illustrated for data
processing system. The different embodiments may be
implemented using any hardware device or system capable
of running program code.

As another example, a storage device in data processing
system may be any hardware apparatus that may store data.
Memory, persistent storage, and computer readable medium
are examples of storage devices in a tangible form, in
particular in a non-transitory tangible form. In another
example, a bus system may be used to implement commu-
nications fabric and may be comprised of one or more buses,
such as a system bus or an input/output bus. Of course, the
bus system may be implemented using any suitable type of
architecture that provides for a transfer of data between
different components or devices attached to the bus system.
Additionally, a communications unit may include one or
more devices used to transmit and receive data, such as a
modem or a network adapter. Further, a memory may be, for
example, memory, or a cache, such as found in an interface
and memory controller hub that may be present in commu-
nications fabric.

According to an example of the present invention an
approach to introduce a performance domain measurement
instead of a time domain measurement for detecting inter-
ferences during time-shared execution of two or more appli-
cation tasks in a common computing shell providing
resources shared among the executed tasks is suggested. The
term “performance” may be understood as the amount of
useful work accomplished by the common computing shell
compared to the time required for execution. Herein, the
term “computing shell” or “shell” should be understood to
comprise all hardware components of a processing system,
which are involved when instructions are executed, includ-
ing for instance instruction memory, data memory, central
processing unit, bus matrix connecting memory and bus,
clock generation unit, reset and power up circuit, voltage
regulators, interrupt generation and handling circuit.

Those skilled in the art immediately understand that the
performance of a computing shell is inter alia determined by
a response time upon invocation of hardware functionality
(such as an interrupt call) and throughput, e.g., rate of
processing. Delay in response time and/or reduced through-
put may be experienced in particular when two or more
separate applications are executed in multitasking mode,
e.g., in accordance with a time-shared scheduling scheme, in
a single common computing shell. The skilled person is
aware that in the aforementioned case resources of the
common computing shell are shared between the separate
applications and application tasks, which instructions
thereof are executed in a timely sequence. Sharing of
resources between separate tasks causes necessarily inter-
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ferences in the execution of a task due to changes in the state
of the shared resources by a previously executed task, which
results in delay(s) of the execution of the currently executed
one. As long as the level of interferences is within a range,
the processing of each task progresses and the tasks perform
the programmatic functionalities within the required time
window. However, in the case that the interference level is
above a threshold the progress in the processing of one or
more of the tasks may be delayed to such an extent that the
programmatic functionalities are not performed anymore
within the required time window.

In the field of hardware and software development, the
use of information collected by so-called performance-
monitoring tools is known. The performance data collected
by the performance-monitoring tools enables the developers
to better understand how the hardware elements within the
computing shell operate and interoperate with the operating
system and the separate applications and tasks thereof
executed in multitasking mode. The performance-monitor-
ing tools is attributed to the computer devices having
become increasingly more complex. This growing complex-
ity increases the difficulty of analyzing and understanding
the dynamic behavior of the computer devices. When com-
puter devices are built with low integration components,
hardware monitoring techniques are able to access and
analyze signals of interest for understanding the operation
and performance of the computer devices during develop-
ment of software. But as computer devices become more
complex and highly integrated, these signals of interest can
become inaccessible, many times being sealed within the
packages of the components. Moreover, simulations of com-
puter device behavior are incapable of providing a complete
understanding of the performance of the computer device.
For one, such simulations run at significantly lower speeds
than actual computer device operation. Consequently, these
simulations are unable to run large real applications within
a useful period of time. Further, the simulations cannot aid
in understanding flaws that are produced during the imple-
mentation of the design or during the manufacture of the
computer device. In order to provide a window of visibility
into the behavior of computer devices, microprocessors have
begun to include on-chip performance counters for counting
occurrences of important events during computer device
operation. Important events can include, for example, cache
misses, instructions executed, and I/O data transfer requests.
These counters can be set to interrupt the microprocessor
upon a count overflow. Typically, the microprocessors can
also periodically examine the performance counters, and
thereby evaluate the performance of the computer device.

Referring now to FIG. 2, a high level block diagram of an
exemplary processing device of the present invention is
illustrated, which comprises at least one processor core 610,
for exemplarily describing detection of performance related
events and generation of event signals in response thereto. In
this example, processor core 610 has been implemented with
an integrated safety interference unit 110 to directly measure
interference(s) occurring during simultaneous execution of
tasks/applications within the computing shell provided by
the processor core 610. The safety interference unit 110 will
be described below in more detail. In some examples, the
safety interference unit 110 may be situated outside of the
processor core 100. The integrated safety interference unit
110 may be operable to utilize data obtained by respective
detector circuits, which are implemented to detect and
signalize performance related events.

For example a detector circuitry 130 may be operably
coupled to the instruction cache and instruction bus interface
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unit, a detector circuitry 150 may be operatively coupled to
the data cache and data bus interface unit, a detector
circuitry 140 may be operatively coupled to the memory
management unit (MMU), a detector circuitry 160 may be
operatively coupled to the instruction decoding unit, a
context switch detector circuitry 170 may be operatively
coupled to the processor registers, and a detector circuitry
120 may be operatively coupled to a one or more processing
units such as the floating point execution unit, the inter
execution unit and/or the multiply unit.

For example, the number of cache misses and hits may be
detected using the detector circuitries 130 and 150 opera-
tively coupled to the cache such that the detector circuitries
130 and 150 are enabled to detect cache misses and hits
within the respective caches. The detectors are configured to
signalized events relating to cache misses and hits within the
respective caches.

For example, the duration of bus arbitration delays may be
detected using the detector circuitries 130 and 150 opera-
tively coupled to instruction and data bus interface units
such that the detector circuitries 130 and 150 are enabled to
detect the bus interface being in waiting state for instance
because at least one of the agents on the bus is not ready to
participate in the communication. The detector circuitries
are configured to signalize status events relating to bus
arbitration delays, in response to which the length of such
delays can be measured for instance by using a gated counter
configured to count the number of e.g. clock cycles, which
laps during a signalized status event relating to a bus
arbitration delay.

For example, the duration of context switching delays
may be detected using the detector circuitry embedded in the
context switching monitor 170 and configured to signalize a
context switch delay event. In analogy to the bus arbitration
delay status event, the detector circuitry is configured to
signalize the status events relating to the context switch
delays, in response to which the length of such delays can be
measured for instance by using a gated counter configured to
count the number of e.g. clock cycles, which laps during a
signalized status event relating to a context switching delay.

For example, the duration of a state change of the memory
management unit (MMU) may be detected using the detec-
tor circuitry 140 operatively coupled to the memory man-
agement unit such that the detector circuitry 140 is enabled
to signalize a state change event of the memory management
unit (MMU). In analogy to the bus arbitration delay status
event, the detector circuitry is configured to signalize the
status events relating to the state changes, in response to
which the length of such delays can be measured for instance
by using a gated counter configured to count the number of
e.g. clock cycles, which laps during a signalized status event
relating to a state change.

For example, the duration of power saving may be
detected using the detector circuitry operatively coupled to
power control unit of a processor/processing core such that
the detector circuitry is enabled to signalize a power saving
state event. In particular the detector circuitry may be
operatively coupled to a clock signal generation circuitry
comprising a phase locked loop for clock signal generation.
The detector circuitry is configured to determine a reduction
of a clock frequency (e.g. by modification of the clock
divider) and the detector circuitry supplies signal indicative
of the power saving state event as long as the reduced clock
cycle signal is active. In analogy to the aforementioned state
events, the detector circuitry is configured to signalize the
status events relating to the state changes, in response to
which the length of such delays can be measured for instance
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by using a gated counter configured to count the number of
e.g. clock cycles, which laps during a signalized state event
relating to a power saving state.

For example, the latency of a service request/interrupt
may be detected using a detector circuitry operatively
coupled to the interrupt controller. The latency of a service
request/interrupt may relate to the duration that is required
after the service request/interrupt has been registered at an
interrupt controller and the corresponding routine thereof is
processed. The detector circuitry operatively coupled to the
interrupt controller is enabled to signalize active/pending
interrupt state events. In analogy to the aforementioned state
events, the detector circuitry is configured to signalize the
status events relating to the active/pending interrupts, in
response to which the length of such latency can be mea-
sured for instance by using a gated counter configured to
count the number of e.g. clock cycles, which laps during a
signalized state event relating to active/pending interrupts.
Hence as long as one or more un-serviced interrupts are
active, pending or scheduled, the gated counter is enabled
and the counter continues counting in accordance with the
clock signal.

Referring now to FIGS. 3 to 5, schematic high level block
diagrams of example event/performance counters are illus-
trated.

An exemplary event/performance counter implementa-
tion shown in FIG. 3 may receive a plurality of event signals
301, for example instruction/data cache miss event signals,
instruction/data cache hit event signals, branch instructions
and the like, which may be operably coupled into a mask
register 311, for example a configurable mask register 311,
which may be utilised for selecting the event signals of
interest, for example using bitwise AND operations on the
basis of a configurable selection register. The mask register
311 may be operably coupled to a logic module, for example
a multiple input OR gate 321 as exemplarily illustrated, to
combine the selected event signals. The combined signal
outputted by the logic module is further supplied to one or
more counter 330, which are operably coupled to the logic
module. Each combined signal outputted by the logic mod-
ule increases or decreases the counter value by a predefined
increment/decrement value. The counter 330 may be reset-
table and/or pre-settable. The count value of the counter 330
may be further readable.

An exemplary state event/performance counter imple-
mentation shown in FIG. 4 may receive a plurality of state
event signals 302, for example bus arbitration delay state
events, context switching delay state events, state change
state events, power saving state events and the like, which
may be operably coupled into a mask register 312, for
example a configurable mask register 312, which may be
utilised for selecting the state event signals of interest, for
example using AND operations on the basis of a configu-
rable selection register. The mask register 312 may be
operably coupled to a logic module, for example a multiple
input OR gate 322 as exemplarily illustrated, to combine the
selected state event signals. The combined signal outputted
by the logic module is supplied to a further logic module,
which operably coupled to the logic module. The further
logic module, e.g. using AND operation, logically combines
the combined signals with a clock signal. The resultant clock
combined signal outputted by the further logic module is
supplied to one or more counters 330, which increases or
decreases the counter value by a predefined increment/
decrement value. As a result of the clock combined signal,
the counter is increased/decreased with each cycle of the
clock signal as long as the states signalized by the selected
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state events are valid (or active or pending). The counter
value represents a measure of the duration of the selected
event states. The counter 330 may be resettable and/or
pre-settable. The count value of the counter 330 may be
further readable.

An exemplary service request/interrupt counter imple-
mentation shown in FIG. 5 may receive a plurality of signals
303 relating to registered interrupt requests. The registered
interrupt request signals may be operably coupled into a
mask register 313, for example a configurable mask register
313, which may be utilised for selecting the event signals of
interest, for example using bitwise AND operations on the
basis of a configurable selection register. The mask register
312 may be operably coupled to a logic module, for example
a multiple input OR gate 322 as exemplarily illustrated, to
combine the selected service request/interrupt request sig-
nals. The combined signal outputted by the logic module is
supplied as an enabling signal to one or more counters 330,
which operably coupled to the logic module. The combined
signal outputted by the logic module is supplied to one or
more counters 330, which increases or decreases the counter
value by a predefined increment/decrement value in accor-
dance with a clock signal supplied thereto. As a result of the
combined signal, the counter is increased/decreased with
each cycle of the clock signal as long as the selected service
requests/interrupts are active (or pending). The counter
value represents a measure of the active/pending time of the
selected service requests/interrupts.

Referring to FIG. 6, a schematic high level block diagram
of example performance counter is illustrated, which allows
for determining execution-time statistics of the instruction
execution. The instructions decoded by the instruction
decoder of a processor/processor core may be latched and
supplied to an instruction classifier 352, which generates one
or more instruction classification signals in accordance with
a predefined classification definition applied to the latched
decoded instruction. The instruction classifier may be con-
figurable. The one or more instruction classification signals
may be further supplied to a configurable mask register 314,
which may be utilised for selecting the instruction classifi-
cation signals of interest, for example using AND operations
on the basis of a configurable selection register. The mask
register 312 may be operably coupled to a logic module, for
example a multiple input OR gate 322 as exemplarily
illustrated, to combine the selected instruction classification
signals. The combined signal outputted by the logic module
is supplied to a further logic module, which operably
coupled to the logic module. The further logic module, e.g.
using AND operation, logically combines the combined
signals with a stall signal outputted by the instruction
execution unit processing the decoded instructions. The
resultant combined signal is supplied as an enabling signal
to one or more counters 330, which increases or decreases
the counter value by a predefined increment/decrement
value in accordance with a clock signal supplied thereto. As
a result of the combined signal, the counter is increased/
decreased with each cycle of the clock signal as long as the
instruction execution unit signalizes that the execution of the
instruction is stalled. The instruction classifier may be
applied to select instructions, which are executed at one or
more specific instruction execution units including for
instance the integer execution unit, the vector and floating
point execution unit and the multiply unit. It is understood
that the above described implementations described with
regard to high level block diagrams are illustrative with
regard to the basic functionality of performance counter
implementations.
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With regard to FIG. 7, a further schematic high level block
diagram of an example implementation of a configurable
performance counter is illustrated. The performance counter
unit 360 is a representative example of each unit 360, 360'
and 360" in the processing device 600. The performance
counter unit 360 receives the performance related signals
304 including in particular the aforementioned event signals,
state event signals, service request/interrupt signals and/or
signals relating to execution-time statistics. The perfor-
mance related signals are provided through an event bus 370
or a data bus operating a protocol to transport the perfor-
mance related signals.

The performance counter unit 360 includes an event
signal selector 361, and event signal combine 362 and
counter 363. The event signal selector 361 receives event
signals 304 from the processing system 600 and issues
signals 305 to the event signal combiner 362. The event
signal combiner 362 is coupled to the counter 363 by signals
306. The counter 363 is coupled to the processing system
600 by read/write (R/W) data line and interrupt line.

During the operation of the processing device 600,
instructions of an application program are executed. When a
certain condition triggers a performance related event 304,
the processing device 600 and detector circuitries thereof
may generates an event signal on the bus 370. The perfor-
mance counter unit 360 receives the event signals 304
generated by the processing system 600 and detector cir-
cuitries thereof. Each other performance counter unit 360
and 360" may receive the same event signals 304 as the
performance counter unit 360. The event signal selector 361
selects a subset of event signals from the event signals 304.
The event signal selector 361 may be configurable by
software executed on the processing device 600 to select a
subset of zero, one or more event signals from the event
signals 304.

The event signal combiner 362 receives the event signals
305 of the subset selected by the event signal selector 361,
and combines these signals 305 to produce new event
signals 306 that enables or triggers the counter 363 to
increase/decrease by a predetermined increment/decrement.
An accumulated count associated with the new event signals
306 is maintained in the counter 363. An underflow/over-
flow detector 364 operably coupled to the counter 363 may
issue an interrupt signal on an interrupt line when the
accumulated count of the counter 363 underflow or over-
flow. The processing device 600 may read or write the
counter 363 via R/W data lines to obtain an ongoing analysis
of the performance of the computer system 600 with respect
to the new event signals 306. The processing device 600 may
also write to the counter 363, such as to preset the counter
363 to a predetermined value.

As briefly introduced above, measures have to be put in
place to reduce the risk of interference if software applica-
tions with different functional safety criticality is executed in
one computing shell. Functional safety criticality is associ-
ated with a level of the safety integrity, which is required in
a specific use case. A performance interference may reduce
the performance of the processing unit while processing a
safety critical software application due to interference of a
second software application having a different level of safety
criticality. The present patent application suggests a meth-
odology implemented in hardware detecting possible per-
formance interferences such that measures can be taken to
react or counteract within a short period of time in order to
maintain and/or restore the functionality of a functional
safety circuital application.
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Safety critical software application represents software,
an inadvertent action of which might be directly responsible
for death, injury, occupational illness, or significant opera-
tion, or a result of an action of which would be relied on for
decisions, which might cause death, injury, or other signifi-
cant actions. Safety critical application is typically operated
in a safety critical environment, which is one in which a
computer software activity (process, functions, etc.) whose
errors, such as inadvertent or unauthorized occurrences,
failure to occur when required, erroneous values, or unde-
tected hardware failures can result in a potential hazard, or
loss of predictability of system outcome.

Hence, it is understood that an encapsulation of applica-
tions having different safety criticality is of increasing
interest. An encapsulation in the address domain is for
instance obtained by using memory protection units (MPU)
or memory management units (MMU). However, encapsu-
lation in the performance domain is currently handled by
imprecise time based measures, so called watchdogs. Watch-
dog timer require a periodic trigger. Within the critical task
respective trigger points are included. At these trigger points
the watchdog timer is software-triggered. However the pre-
cision to trigger these timers is not very high, as an appli-
cation may take longer or shorter dependent on the data
processed (data dependent on instruction execution times),
input dependent data, the number of loops to be passed, etc.

The safety interference unit according to examples of the
present patent application therefore introduces a measure-
ment of inferences in the performance domain instead of the
time domain. Such action allows for reducing the safety risk
that one safety critical application interferes with a second
application causing dangerous malfunction due to too low
processing performance because of interference. By detect-
ing interferences, the processing system may be switched
into a safe state before a malfunction thereof may result in
harms of the health or the life of users. The detection of
interference should be performed in a time span shorter than
the time an erroneous system requires to endanger health of
life of people, the so-called fault tolerant time interval. The
performance of a computing shell is characterized by the
amount of useful work accomplished by a computing shell
compared to the time. For instance an embedded computing
shell performance, but not limited thereto, involves in par-
ticular the following:

response time for a given piece of functionality, e.g. an
interrupt, and

throughput, which is the rate of processing work.

Targeting performance domain interference of applica-
tions executed in a time sharing environment by one com-
puting shell requires quantifying disturbances due to inter-
ferences in the performance domain. In particular,
inferences occur due to sharing of state based resources.

The currently used called timeout watchdog or window
watchdog to measure the time duration an application and a
task thereof requires to complete its execution. However,
processing shells are less deterministic in the time domain,
for instance because of more and more speculative opera-
tions performed within a processor or processor core. In case
the speculations are correct, the results are available earlier,
however, in case the speculations are wrong the same
instruction requires longer. Further, the hierarchical memory
system including different levels of date and/or instruction
caches also tries to speculatively pre-fetch and store data and
instructions. In case the speculative fetches were correctly
predicted, execution time is fast, however it may slow down
significantly the performance in case predicted behavior did
not meet the application behavior. The execution time relies
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heavily on the executed instructions, the processed data, the
number of context switches (interrupt) etc. As a consequence
the time windows for time domain performance monitoring
using timeout watchdogs or window watchdogs have to be
wider and wider.

Referring now to FIG. 8, a block diagram of a safety
interference unit 110 according to an example of the present
patent application is schematically illustrated. The safety
interference unit 110 comprises or has access to one or more
performance counters 140, to 140,., which have been
described with references to various illustrative examples
thereof. As exemplified above, a logic, in particular a
configurable, may be provided to detect event signals 304
communicated over a bus 370 are any other suitable one or
more signal lines to an event signal selector 361 and/or event
signal combiner 362, which passes or generates (clock,
enable) signals for a respective one of the performance
counters 140, to 140,, which increase or decrease their
counter values in response to the passed/generated signals.
Accordingly, one or more performance related events are
associated or associatable with an individual performance
counter 140, to 140,. The performance related events are
detected and signalized by detector circuitries provided at or
within specific parts of the processing device as illustrated
above with respect to the exemplary performance counters.

The values of the performance counters may be accessible
for read and/or write operations. A read access operation
retrieves the current value of the performance register. A
write access operation set, resets and/or initialize the per-
formance counter to for instance a specific value, which may
be a predefined value or default value. Depending where the
counters are located, the value thereof may be read out either
as a set of registers, or as a set of memory locations through
memory mapped registers (MMR) or memory-mapped
input/output (MMIO). The performance counters may be
accessed by hardware and/or software.

The performance counters 140, to 140, may be 32-bit
counters. However, in other examples, other counter sizes
may be used. The safety interference unit 110 may for
instance comprise a plurality of registers, which are utilised
as an interface to the performance counters 140, to 140, to
count performance relevant events.

The safety interference unit 110 may further comprise a
counter selector 111, which is in particular configurable, to
select one or more values retrieved from the performance
counters 140, to 140, for being analyzed in order to detect
any interferences on the basis of the values obtained from
the performance counters 140, to 140,. The counter selector
111 is operatively connected to the one or more performance
counters 140, to 140,,.

The selected performance counter values are supplied by
the counter selector 111 to a comparator 112 operatively
coupled thereto. The comparator 112 is configured to ana-
lyze the performance counter values supplied thereto. The
performance counter values to be analyzed may comprise
counter values of one or more selected performance counters
140, to 140,,. The comparator 112 of the safety interference
unit 110 may be configurable. For instance, the comparator
112 may be configurable to compare the performance coun-
ter values supplied thereto with respective reference values,
which may be implemented as a set of registers of as a set
of memory locations through memory mapped registers
(MMR) or memory-mapped input/output (MMIO). The ref-
erence values may be accessible for read and/or write
operations. A read access operation retrieves one or more
reference values. A write access operation set, resets and/or
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initialize one or more references values to for instance
specific values, which may be predefined values or default
values.

The comparator 112 may be configured to compare the
performance counter values with the respective reference
values in order to detect whether the performance counter
values are within boundary conditions defined on the basis
of the reference values. In particular, the comparator 112
may be configured to detect overflow or underflow of the
performance counter values with respect to respective ref-
erence values representing overflow and/or underflow
threshold values and to generate a detection signal 115 in
case a performance interference is detected. The detection
signal is to be supplied to a signal generator 114 generating
an interference indication signal in response to the detection
signalized by the comparator 112.

In a further example of the present application, the
comparator 112 may be configured to calculate a convolu-
tion value of performance counter values of one or more
selected performance counters and reference values. The
reference values may be obtained during the development of
the functional safety circuital application for instance by
simulation runs in combination with one or more further
applications. A convolution value calculated by the com-
parator 112 below a threshold, which is specific for the
functional safety circuital application, is indicative of a
processing flow of the functional safety circuital application
differing from the expected/intended processing tlow
defined on the basis of the reference values. The convolution
value may be understood to represent a value representative
of the level of matching of the processing flow monitored on
the basis of the performance counters and the values thereof.
The higher the level of matching the more similar the
processing flow with the expected/intended one.

Schematic implementations of a convolution based com-
parator 112 are exemplified with reference to FIGS. 9 and
10. Performance counter values 210 of one or more selected
performance counters are convolved with reference values
220, in particular predetermined reference values, and the
convolution result is compared with a threshold value 245,
in particular a predetermined threshold value. The convo-
Iution 240 may be applied to performance counter values of
one or more selected performance counters or the convolu-
tion may be applied to ratios determined from the perfor-
mance counter values of one or more selected performance
counters. The performance counter value ratios may be
obtained by applying 215 a base value 216 or individual base
values. The base values may be a time dependent value in
order to obtain ratios representing time-normalized perfor-
mance counter values. For instance, the ratios may be
normalized with respect to a period of time, over which the
performance counters have been counted the signalized
performance related events.

In case that the convolution value is below the threshold
245, an indication signal may be generated 250, which
indicates that counter values of the selected performance
counters differ from the expected/intended counter values, in
turn may indicate that the processing flow (e.g. the process-
ing behavior of the application) differs from the expected
processing flow (e.g. the expected processing behavior of
the application). The threshold may be understood to define
a degree of difference or degree of similarity and is in
particular configurable. With respect to the examples of
FIGS. 9 and 10, the reference values (e.g. golden reference
values), the base values and/or the threshold may be imple-
mented as a set of registers of as a set of memory locations
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through memory mapped registers (MMR) or memory-
mapped input/output (MMIO).

The comparator 112 may repeatedly perform the com-
parison operation, in particular cyclically and more particu-
larly periodically. The repetition of the comparison opera-
tion performed by the comparator 112 may be configurable.

In case the detected performance interference determined
by the comparator 112 is out of bound, e.g. too low inter-
ference or too high interference with respect to undertlow
and overflow thresholds, respectively, or the processing flow
of an application does not show the expected behavior, an
interference indication signal in time domain or value
domain signal may be generated and signalized by an
interference signal generator 114 of the safety interference
unit 110. The interference signal generator 114 operably
coupled to the comparator 112 may be arranged to generate
different interference indication signals, which comprises:

an interference indication signal may be a service request
or may cause a service request, which may be directed to the
functional safety critical application, which enabled the
functional safety critical application to react and repair
interference issues in real time for instance in that the
functional safety critical application is executed at a higher
priority level, which enables the functional safety critical
application to have assigned a larger share of the total
processing time shared among the applications executed at
the processing system;

an interference indication signal may be a hardware fault
signal or may cause a hardware fault signal, which switches
the processing unit or processing system, at which the
functional safety critical application is executed into a
failsafe state as the detected interference may infringe the
safety function or safety requirements thereof;

an interference indication signal may be a hardware fault
signal or may cause a hardware fault signal, which triggers
a reboot (e.g. a reset) of the processing device or processing
system or components thereof, at which the functional safety
critical application is executed; and

an interference indication signal may be a hardware fault
signal or may cause a hardware fault signal, which disables
one or more components of the processing device or pro-
cessing system, at which the functional safety critical appli-
cation is executed, in particular one or more input/output
(I0) components may be disabled such as serial multiplexed
bus communication e.g. CAN or FlexRay communication to
mention some known communication standards.

The interference signal generator 114 is configurable. In
some examples, the generator 114 is configurable to gener-
ate signals dependent on one or more performance counter
values, on the basis of which the comparator 112 has
detected an interference.

It should be noted that “configurability” of the safety
interference unit 110 and components thereof should be
understood in that a programming interface such as an
application programming interface (API) is provided,
through which a configuration of the safety interference unit
110 and components thereof is obtainable.

Moreover, one or more components of the safety inter-
ference unit 110 may be software implemented, in particular,
one or more software-implemented components of the safety
interference unit 110 may be executed as a privileged
application at a same processor core or as an application at
another processor core in order to ensure that the detection
of application interferences is performed at a predefined
reliability level with regard to its functionality and respon-
siveness.
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Referring to FIG. 11, a time sequence diagram schemati-
cally illustrating interference detection with regard to an
example computing shell, within which a functional safety
critical application and a non-functional safety critical appli-
cation are executed. The non-functional safety critical appli-
cation should be understood to be representative of one or
more application, which are non-functional safety critical or
have a functional safety critical level lower than that of the
functional safety critical application. The individual instruc-
tions of the applications are executed in time sharing at the
same computing shell providing shared resources for the
applications. The execution of the exemplified functional
safety critical application may one or more sections of the
execution flow subjected to functional safety criticality and
one or more sections subjected to a functional safety criti-
cality of a lower safety level including non-safety relevant
level. The interference detection is operated at least during
the execution of execution flow sections subjected to a
functional safety criticality.

As illustratively shown in FIG. 11, at a stage 400 the
safety interference unit 110 is configured, which may
include the configuration of the performance counters 140,.
The configuration may comprise a configuration, in accor-
dance with which performance counters are to be monitored
by the safety interference unit 110, and may further comprise
a configuration of the performance counter logic to count the
respective events. The configuration may be performed by
the functional safety critical application. In particular, func-
tional safety critical application may configure the reference
values, base values and/or thresholds of the safety interfer-
ence unit 110 e.g. through an application programming
interface (API).

The safety interference detection may be automatically
started upon configuration of the safety interference unit 110
or, as illustratively shown, upon an instruction e.g. from the
functional safety critical application to the safety interfer-
ence unit 110 at stage 405. In conjunction with the instruc-
tion to start detection of interferences, the performance
counters 140,, the values of which are monitored by the
safety interference unit 110, may be set or reset to a
predetermined values.

The safety interference unit 110 then retrieves the perfor-
mance counter values of the performance counter 140,
selected in accordance with the configuration in order to
detect interferences on the basis of the comparison operation
performed at the safety interference unit 110 with respect to
the reference values. As illustratively shown in FIG. 11, the
safety interference unit 110 may repeatedly retrieve the
performance counter values in accordance with detection
intervals, e.g. stage 411, 413, and 415. After each retrieval,
the selected performance counters 140, may be again set or
reset to predetermined values, e.g. stages 412, 414, and 416.

The detection intervals may be equidistant in time, for
instance triggered by a timer internal or external to the safety
interference unit 110. In general, the detection intervals may
have the same length in time or vary in length, may be
regular or may be periodically.

The monitoring and detection of interference events by
the safety interference unit 110 may be stopped or suspended
upon an instruction e.g. from the functional safety critical
application to the safety interference unit 110 at stage 420.

During the monitoring of the performance counter values,
the safety interference unit 110 may detect an interference
event. As described above, upon detection of an interference
event by the safety interference unit 110 an interference
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indication signal is generated and issued e.g. to the func-
tional safety critical application as illustratively shown at
stage 421.

With reference to the stages 430 to 450, an operation of
an exemplary safety interference unit 110 is illustratively
shown, which monitors the performance counter values
normalized against time. Accordingly, the performance
counter values may be retrieved in accordance with a
detection interval and normalized with respect to the detec-
tion time interval. A setting or resetting of the performance
counter values may be omitted in this case.

Those skilled in the art understand on the basis of the
above description that the properties and features described
with respect to one or more examples may also apply to
and/or combinable with other examples.

According to an example of the present application, an
exemplary apparatus for detecting software interference
comprises a processor and at least one shared resource
forming a computing shell, which is configured to execute a
first, functional safety critical application and at least one
second application in time-shared operation, one or more
performance counters, each of which is configured to adjust
a counter value in response to a performance related event
detected at the apparatus in response to execution of the first
and the at least one second applications, a reference value
storage, which is configured to store one or more threshold
values, wherein each of the one or more reference values is
associated with one of the one or more performance coun-
ters, a comparator, which is operatively coupled to the one
or more performance counters and configured to receive the
one or more counter values therefrom, to compare the one or
more counter values with the respective threshold value
retrieved from the reference value storage and to generate at
least one comparison signal in response to results of the one
or more comparisons, and an interference indication gen-
erator, which is operatively coupled to the comparator to
receive the at least one comparison signal and configured to
generate at least one interference indication in response to
the at least one received comparison signal.

According to an example of the present application, the
comparator is further configured to detect underflow and/or
overflow of the counter values with respect to the respective
threshold value.

According to an example of the present application, the
comparator is further configured to calculate a convolution
value on the basis of the one or more counter values received
from the one or more performance counters and one or more
reference value retrieved from the one or more reference
value storage configured to store the one or more reference
value.

According to an example of the present application, the
comparator is further configured to calculate counter value
ratios on the basis of one or more base values, wherein the
one or more ratio base values comprises at least one or a
period of time and one or more ratio base values each
associated with one of the one or more performance coun-
ters. The comparator is also configured to compare the one
or more counter value ratios with the respective threshold
value retrieved from the reference value storage.

According to an example of the present application, the
interference indication comprises at least one of an interfer-
ence indication to the functional safety critical application;
an interference indication to the processor for switching into
a failsafe state; an interference indication to trigger a reboot
of the processor; and an interference indication signal to
disable one or more components of the processor.
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According to an example of the present application the
apparatus for detecting software interference further com-
prises a counter selector operably inter-coupled between the
performance counters and the comparator is configured to
select a subset of performance counters form the one or more
performance counters and to supply the counter values of the
selected subset of performance counters to the comparator.

According to an example of the present application, a
method for detecting software interference between a first,
functional safety critical application and at least one second
application executed in time-shared operation in a comput-
ing shell formed of a processor and at least one shared
resource is suggested. One or more performance counter
values are received from one or more performance counters
each configured to adjust a counter value in response to a
performance related event detected at the apparatus in
response to execution of the first and the at least one second
applications. The one or more performance counter values
are compared with the respective threshold value retrieved
from a reference value storage configured to store the one or
more threshold values, wherein each of the one or more
reference values is associated with one of the one or more
performance counters. At least one comparison signal is
generated in response to results of the one or more com-
parisons. And at least one interference indication is issued in
response to the at least one received comparison signal.

Thus, examples of the invention may be implemented in
a computer program for running on a computer system, at
least including code portions for performing steps of a
method according to the invention when run on a program-
mable apparatus, such as a computer system or enabling a
programmable apparatus to perform functions of a device or
system according to the invention.

A computer program is a list of instructions such as a
particular application program and/or an operating system.
The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method,
an object implementation, an executable application, an
applet, a servlet, a source code, an object code, a shared
library/dynamic load library and/or other sequence of
instructions designed for execution on a computer system.

Thus, the computer program may be stored internally on
computer readable storage medium or transmitted to the
computer system via a computer readable transmission
medium. All or some of the computer program may be
provided on computer readable media permanently, remov-
ably or remotely coupled to an information processing
system. The computer readable media may include, for
example and without limitation, any number of the follow-
ing: magnetic storage media including disk and tape storage
media; optical storage media such as compact disk media
(e.g., CD-ROM, CD-R, etc.) and digital video disk storage
media; non-volatile memory storage media including semi-
conductor-based memory units such as FLASH memory,
EEPROM, EPROM, ROM; ferromagnetic digital memories;
MRAM; volatile storage media including registers, buffers
or caches, main memory, RAM, etc.; and data transmission
media including computer networks, point-to-point telecom-
munication equipment, and carrier wave transmission
media, just to name a few.

A computer process typically includes an executing (run-
ning) program or portion of a program, current program
values and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the
sharing of the resources of a computer and provides pro-
grammers with an interface used to access those resources.
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An operating system processes system data and user input,
and responds by allocating and managing tasks and internal
system resources as a service to users and programs of the
system.

The computer system may for instance include at least
one processing unit, associated memory and a number of
input/output (I/O) devices. When executing the computer
program, the computer system processes information
according to the computer program and produces resultant
output information via I/O devices.

Examples of the invention may also be implemented in a
computer program for running on a computer system, at
least including code portions for performing steps of a
method according to the invention when run on a program-
mable apparatus, such as a computer system or enabling a
programmable apparatus to perform functions of a device or
system according to the invention.

A computer program is a list of instructions such as a
particular application program and/or an operating system.
The computer program may for instance include one or more
of: a subroutine, a function, a procedure, an object method,
an object implementation, an executable application, an
applet, a servlet, a source code, an object code, a shared
library/dynamic load library and/or other sequence of
instructions designed for execution on a computer system.

The computer program may be stored internally on com-
puter readable storage medium or transmitted to the com-
puter system via a computer readable transmission medium.
All or some of the computer program may be provided on
computer readable media permanently, removably or
remotely coupled to an information processing system. The
computer readable media may include, for example and
without limitation, any number of the following: magnetic
storage media including disk and tape storage media; optical
storage media such as compact disk media (e.g., CD-ROM,
CD-R, etc.) and digital video disk storage media; non-
volatile memory storage media including semiconductor-
based memory units such as FLASH memory, EEPROM,
EPROM, ROM; ferromagnetic digital memories; MRAM;
volatile storage media including registers, buffers or caches,
main memory, RAM, etc.; and data transmission media
including computer networks, point-to-point telecommuni-
cation equipment, and carrier wave transmission media, just
to name a few.

A computer process typically includes an executing (run-
ning) program or portion of a program, current program
values and state information, and the resources used by the
operating system to manage the execution of the process. An
operating system (OS) is the software that manages the
sharing of the resources of a computer and provides pro-
grammers with an interface used to access those resources.
An operating system processes system data and user input,
and responds by allocating and managing tasks and internal
system resources as a service to users and programs of the
system.

The computer system may for instance include at least
one processing unit, associated memory and a number of
input/output (I/O) devices. When executing the computer
program, the computer system processes information
according to the computer program and produces resultant
output information via I/O devices.

In the foregoing specification, the invention has been
described with reference to specific examples of embodi-
ments of the invention. It will, however, be evident that
various modifications and changes may be made therein
without departing from the broader spirit and scope of the
invention as set forth in the appended claims.
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Those skilled in the art will recognize that the boundaries
between logic blocks are merely illustrative and that alter-
native embodiments may merge logic blocks or circuit
elements or impose an alternate decomposition of function-
ality upon various logic blocks or circuit elements. Thus, it
is to be understood that the architectures depicted herein are
merely exemplary, and that in fact many other architectures
can be implemented, which achieve the same functionality.

Any arrangement of components to achieve the same
functionality is effectively ‘associated’ such that the desired
functionality is achieved. Hence, any two components
herein combined to achieve a particular functionality can be
seen as ‘associated with’ each other such that the desired
functionality is achieved, irrespective of architectures or
intermediary components. Likewise, any two components so
associated can also be viewed as being ‘operably con-
nected’, or ‘operably coupled’ to each other to achieve the
desired functionality.

Furthermore, those skilled in the art will recognize that
boundaries between the above described operations merely
illustrative. The multiple operations may be combined into
a single operation, a single operation may be distributed in
additional operations and operations may be executed at
least partially overlapping in time. Moreover, alternative
embodiments may include multiple instances of a particular
operation, and the order of operations may be altered in
various other embodiments.

Also for example, in one embodiment, the illustrated
examples may be implemented as circuitry located on a
single integrated circuit or within a same device. For
example, the interference counter may be integrated within
a processor core, or be a separate module within a comput-
ing system, operable to communicate with the processor
core, for example. Alternatively, the examples may be
implemented as any number of separate integrated circuits
or separate devices interconnected with each other in a
suitable manner.

Also for example, the examples, or portions thereof, may
implemented as soft or code representations of physical
circuitry or of logical representations convertible into physi-
cal circuitry, such as in a hardware description language of
any appropriate type.

Also, the invention is not limited to physical devices or
units implemented in non-programmable hardware but can
also be applied in programmable devices or units able to
perform the desired device functions by operating in accor-
dance with suitable program code, such as mainframes,
minicomputers, servers, workstations, personal computers,
notepads, personal digital assistants, electronic games, auto-
motive and other embedded systems, cell phones and vari-
ous other wireless devices, commonly denoted in this appli-
cation as ‘computer systems’.

However, other modifications, variations and alternatives
are also possible. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than in a
restrictive sense.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
“comprising” does not exclude the presence of other ele-
ments or steps then those listed in a claim. Furthermore, the
terms “a” or “an”, as used herein, are defined as one or more
than one. Also, the use of introductory phrases such as ‘at
least one’ and ‘one or more’ in the claims should not be
construed to imply that the introduction of another claim
element by the indefinite articles ‘a’ or ‘an’ limits any
particular claim containing such introduced claim element to
inventions containing only one such element, even when the
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same claim includes the introductory phrases “one or more”
or “at least one” and indefinite articles such as “a” or “an”.
The same holds true for the use of definite articles. Unless
stated otherwise, terms such as “first” and “second” are used
to arbitrarily distinguish between the elements such terms
describe. Thus, these terms are not necessarily intended to
indicate temporal or other prioritization of such elements.
The mere fact that certain measures are recited in mutually
different claims does not indicate that a combination of these

measures cannot be used to advantage.

The invention claimed is:

1. An apparatus for detecting software interference, com-

prising

a processor and at least one shared resource forming a
computing shell, which is configured to execute a first,
functional safety critical application and at least one
second application in time-shared operation;

one or more performance counters each configured to
adjust a counter value in response to a performance
related event detected at the apparatus in response to
execution of the first and the at least one second
applications;

a reference value storage configured to store one or more
threshold values, wherein each of the one or more
reference values is associated with one of the one or
more performance counters;

a comparator operatively coupled to the one or more
performance counters and configured to receive the one
or more performance counter values therefrom, to
compare the one or more performance counter values
with the respective threshold value retrieved from the
reference value storage and to generate at least one
comparison signal in response to results of the one or
more comparisons; and

an interference indication generator operatively coupled
to the comparator to receive the at least one comparison
signal and configured to generate at least one interfer-
ence indication in response to the at least one received
comparison signal;

wherein the comparator is further configured to calculate
a convolution value on the basis of the one or more
counter values received from the one or more perfor-
mance counters and one or more reference value
retrieved from the one or more reference value storage
configured to store the one or more reference value.

2. The apparatus of claim 1,

wherein the comparator is further configured to detect
underflow and/or overflow of the counter values with
respect to the respective threshold value.

3. The apparatus of claim 1,

wherein the comparator is further configured to calculate
counter value ratios on the basis of one or more base
values, wherein the one or more ratio base values
comprises at least one of a period of time and one or
more ratio base values each associated with one of the
one or more performance counters,

wherein the comparator is further configured to compare
the one or more counter value ratios with the respective
threshold value retrieved from the reference value
storage.

4. The apparatus of claim 1,

wherein the interference indication comprises at least one
of an interference indication to the functional safety
critical application; an interference indication to the
processor for switching into a failsafe state; an inter-
ference indication to trigger a reboot of the processor;
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and an interference indication signal to disable one or
more components of the processor.

5. The apparatus of claim 1, further comprising

a counter selector operably inter-coupled between the
performance counters and the comparator and config-
ured to select a subset of performance counters from
the one or more performance counters and to supply the
counter values of the selected subset of performance
counters to the comparator.

6. A method for detecting software interference between 10

a first, functional safety critical application and at least one
second application executed in time-shared operation in a
computing shell formed of a processor and at least one
shared resource, the method comprising:
receiving one or more performance counter values from
one or more performance counters each configured to
adjust a performance counter value in response to a
performance related event detected at the apparatus in
response to execution of the first and the at least one
second applications;
comparing the one or more performance counter values
with the respective threshold value retrieved from a
reference value storage configured to store the one or
more threshold values, wherein each of the one or more
reference values is associated with one of the one or
more performance counters;
generating at least one comparison signal in response to
results of the one or more comparisons;
issuing at least one interference indication in response to
the at least one received comparison signal;
calculating a convolution value on the basis of the one or
more counter values received from the one or more
performance counters and one or more reference value
retrieved from the one or more reference value storage
configured to store the one or more reference value.
7. The method of claim 6,
detecting underflow and/or overflow of the counter values
with respect to the respective threshold value.
8. The method of claim 6,
calculating counter value ratios on the basis of one or
more base values, wherein the one or more ratio base
values comprises at least one or a period of time and
one or more ratio base values each associated with one
of the one or more performance counters, and
comparing the one or more counter value ratios with the
respective threshold value retrieved from the reference
value storage.
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9. The method of claim 6,

wherein the interference indication comprises at least one
of an interference indication to the functional safety
critical application; an interference indication to the
processor for switching into a failsafe state; an inter-
ference indication to trigger a reboot of the processor;
and an interference indication signal to disable one or
more components of the processor.

10. The method of claim 6, further comprising selecting
a subset of performance counters from the one or more
performance counters and supplying the counter values of
the selected subset of performance counters to the compara-
tor by a counter selector operably inter-coupled between the
performance counters and the comparator.

11. Non-transitory, tangible computer-readable storage
medium having stored thereon a computer program for
detecting software interference between a first, functional
safety critical application and at least one second application
executed in time-shared operation in a computing shell
formed of a processor and at least one shared resource, the
computer program comprising a set of instructions, which,
when executed on the processor, cause the processor to
perform the method comprising:

receiving one or more performance counter values from

one or more performance counters each configured to
adjust a counter value in response to a performance
related event detected at the apparatus in response to
execution of the first and the at least one second
applications;

comparing the one or more counter values with the

respective threshold value retrieved from a reference
value storage configured to store the one or more
threshold values, wherein each of the one or more
reference values is associated with one of the one or
more performance counters;

generating at least one comparison signal in response to

results of the one or more comparisons;

issuing at least one interference indication in response to

the at least one received comparison signal;
calculating a convolution value on the basis of the one or
more counter values received from the one or more
performance counters and one or more reference value
retrieved from the one or more reference value storage
configured to store the one or more reference value.
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